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Hypotheses 

• Discrete time (without uncertainty) 

1) Individuals 

• Two period lived individuals whose generations overlap 

• Population grows at the exogenous rate n 

• Individuals maximize their own lifetime utility over consumption, taking prices as given 
(expectations later on) 

• Individuals work in the first period (labour supply normalized to 1) receiving a wage w 
and retire in the second period. 

• Hence they have to save out of their wages for consuming in the second period 

• Income, consumption and savings occur at the beginning of the period (convention) 

2) Firms  

• Firms run their business in a perfectly competitive setting and maximize their profits 

• Hire capital and labour and pay them according to their marginal productivity 

3) Markets 

• There are three markets: labour market, goods market, and capital market (capital is 
a production good, like corn). 

• Capital is offered by young households to firms and enters the production process the 
next period (one period delay in production), Hence it is given back with interests in 
the next period (when lenders are old) 
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Individuals 

• Individuals of generation t maximize a 

lifetime utility function defined over 

consumption in the two periods and 

assuemed additive and separable: 

• Ut=u(c1t)+βu(c2t+1),  

with 0<β<1 the intertemporal discount factor 

and 

H2: u’>0, u’’<0+ lim(c->0)u’=∞. 
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Individuals (cont’d) 
• Budget constraint (in real terms, or assuming pt and pt+1=1) 

 

wt=c1t+st  

st(1+r(e)t+1)=c2t+1  

 

where st is savings and r(e)t+1 is expected return on savings and R(e)t+1≡1+r(e)t+1. The lifetime version 
of the individual’s budget constraint is simply: 

 

c1t+c2t+1/(1+rt+1)=wt  

  

•  Hence, the individual’s problem is  

 

max U=max (u(wt-st)+ βu(st(1+r(e)t+1))  

 

with respect to st which yields: 

 

u’(c1t)/(u’(c2t+1))= β(1+r(e)t+1)  

 

 which is the so called Euler’s equation. 

 

• Note that if individuals are rational, r(e)t+1=rt+1, while if they are myopic, then we will assume that 
r(e)t+1=rt 
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Properties of demand functions 

The solution provides demand functions 

c1=c1(wt,rt+1), c2=c2(wt,rt+1) and the saving 

function st=s(wt,rt+1). 

 

1) Under separability and concavity of the utility 

function, consumption is normal and the 

marginal propensity to save is positive and 

less than 1. 
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Proof 
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• By differentiating Euler’s equation and the 

lifetime budget constraint with respect to c1 

and w we get:   
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The role of the interest rate 

• Let us use the implicit function theorem. 

• (see De la Croix-Michel 2002, p.311). 

Take the FOC: 
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Firms 

• Assume F(K,L) is Constant returns to scale 

• Firms maximize current profits πt  

 

 

t

t

t

t

tttttttt

w
L

F

r
K

F

KKrLwLKF













              

,               

imply FOCS

capital. ofon depreciati is  where

 ,,max









9 

Feasibility constraint 

• The feasibility constraint is an accounting 

identity, whereby: 

• Yt≡F(Kt,Lt)=Ct+It 
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Intertemporal equilibrium 

• It is a set of prices (w and r), allocations (consumption, 
labour supply, capital) and expectations (r(e)) which 
implement a competitive equilibrium in each period 
(temporary equilibrium). 

• A temporary equilibrium is a set of prices and allocations 
that clear all markets and satisfy the feasibility contraint, 
given past history and price expectations. 

• Note that at time t only two markets are open: labor and 
goods markets, in that the physical capital is already 
installed and investment It results from the decision of 
the young individuals in t-1. 
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Intertemporal equilibrium 

• Given an initial capital stock k0=K0/N-1, an 

inter-temporal equilibrium with perfect 

foresight is a sequence of temporary 

equilibria that satisfies for all t≥0 the 

condition: 

• (1+n)kt+1=s(wt(kt),f(kt+1)) 
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Steady state 
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Steady state 
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Unstable steady state 

kt+1=kt 

Stable steady state 

By totally differentiating (1+n)kt+1=s(wt(kt),f(kt+1)) w.r.t. kt+1 and kt  

we get that                                            . Recall that f’’<0, sw>0, 

 

Under these assumption the locus has 1 stable nonzero steady state   
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