Employment protection with fixed wages

Firms operate in two period. In the first one $Y=\log N$ while in the second
it is $Y=\theta \log N$ where θ is a productivity parameter
with probability p it is $\theta_{L}<1$ and with 1- p it is $\theta_{H}>1$. Wage is fixed at W, price are normalized to 1 and employment is N. Firing costs are equal to z

We then have the following expected profits $E(\pi)$:
$E(\pi)=Y_{1}-W N_{1}+E\left[Y_{2}-W N_{2}-z \cdot \max \left(N_{1}-N_{2}, 0\right)\right]$
And specifying the production functions:
$E(\pi)=\log N_{1}-W N_{1}+p \theta_{L} \log N_{2}+(1-p) \theta_{H} \log N_{2}-W N_{2}-z \cdot \max \left(N_{1}-N_{2}, 0\right)$
We solve it with backward induction

Second period decisions:

If we have θ_{H} (with probability 1-p), the firms necessarily want to increase N_{1} and $N_{1}-N_{2}<0$. Then second period profits are:
$\pi_{2}=\theta_{H} \log N_{2}-W N_{2}-z \cdot \max \left(N_{1}-N_{2}, 0\right)=\theta_{H} \log N_{2}-W N_{2}$
In this case optimal employment entails
$\frac{\partial \pi_{2}}{\partial N_{2}}=\frac{\theta_{H}}{N_{2}}-W=0$
And then
$N_{2}=\frac{\theta_{H}}{W}$
Equation (5) is employment in the second period when productivity turns out to be high: in this case employment does not depends on firing costs z.

If we have θ_{L} (with probability p), the firms necessarily want to decrease N_{1} and $N_{1}-N_{2}>0$. Then second period profits are:
$\pi_{2}=\theta_{L} \log N_{2}-W N_{2}-z \cdot \max \left(N_{1}-N_{2}, 0\right)=\theta_{L} \log N_{2}-W N_{2}-z \cdot\left(N_{1}-N_{2}\right)$
In this case optimal employment entails
$\frac{\partial \pi_{2}}{\partial N_{2}}=\frac{\theta_{L}}{N_{2}}-W-z=0$
And then
$N_{2}=\frac{\theta_{L}}{W-z}$
Equation (8) is employment in the second period when productivity turns out to be low: in this case employment depends positively on firing costs z.

First period decisions

Given (5) and (8) we have that the total expected profits are:
$E(\pi)=\log N_{1}-W N_{1}+p \theta_{L} \log \frac{\theta_{L}}{W-z}+(1-p) \theta_{H} \log \frac{\theta_{H}}{W}-W N_{2}-p \cdot z \cdot\left(N_{1}-\frac{\theta_{L}}{W-z}\right)$
In the first period, firms choose N_{1} optimally to maximise the above expected profits. Then
$\frac{\partial E(\pi)}{\partial N_{1}}=\frac{1}{N_{1}}-W-p \cdot z=0$
And then
$N_{1}=\frac{1}{W+p \cdot z}$
Equation (11) is employment in the first period and it depends negatively on firing costs z.

Average expected employment

Average expected employment is $E\left(\frac{N_{1}+N_{2}}{2}\right)$. We have that
$E\left(\frac{N_{1}+N_{2}}{2}\right)=\left(\frac{1}{W+p \cdot z}+p \cdot \frac{\theta_{L}}{W-z}+(1-p) \cdot \frac{\theta_{H}}{W}\right) / 2$

